Skip to content

第25讲:福利:常见JVM面试题补充

最后一课时我们来分析常见的 JVM 面试题。


市面上关于 JVM 的面试题实在太多了,本课程中的第 02 ~ 06 课时是理论面试题的重灾区,并且是比较深入的题目,而本课时则选取了一些基础且常见的题目。


有些面试题是开放性的,而有些面试题是知识性的,要注意区别。面试题并没有标准答案,尤其是开放性题目,你需要整理成白话文,来尽量的展示自己。如果你在回答的过程中描述了一些自己不是很熟悉的内容,可能会受到追问。所以,根据问题,建议整理一份适合自己的答案,这比拿来主义更让人印象深刻。

勘误

我们来回忆一下课程中曾讲解过的容易出错或模糊的知识点。


不知你是否还记得?我们在每一课时的讲解中,都有聚焦的点,不同的问法可能会有不同的回答,要注意。

对象在哪里分配?

在第 02 课时中,谈到了数组和对象是堆上分配,当学完第 22 课时的逃逸分析后,我们了解到并不完全是这样的。由于 JIT 的存在,如果发现某些对象没有逃逸出方法,那么就有可能被优化成了栈上分配。

CMS 是老年代垃圾回收器?

初步印象是,但实际上不是。根据 CMS 的各个收集过程,它其实是一个涉及年轻代和老年代的综合性垃圾回收器。在很多文章和书籍的划分中,都将 CMS 划分为了老年代垃圾回收器,加上它主要作用于老年代,所以一般误认为是。

常量池问题

常量池的表述有些模糊,在此细化一下,注意我们指的是 Java 7 版本之后。


JVM 中有多个常量池:

  • 字符串常量池,存放在堆上,也就是执行 intern 方法后存的地方,class 文件的静态常量池,如果是字符串,则也会被装到字符串常量池中。

  • 运行时常量池,存放在方法区,属于元空间,是类加载后的一些存储区域,大多数是类中 constant_pool 的内容。

  • 类文件常量池,也就是 constant_pool,这个是概念性的,并没有什么实际存储区域。


在平常的交流过程中,聊的最多的是字符串常量池,具体可参考官网

ZGC 支持的堆上限?

Java 13 增加到 16TB,Java 11 还是 4 TB,技术在发展,请保持关注。

年轻代提升阈值动态计算的描述

在第 06 课时中对于年轻代"动态对象年龄判定"的表述是错误的。


参考代码 share/gc/shared/ageTable.cpp 中的 compute_tenuring_threshold 函数,重新表述为:程序从年龄最小的对象开始累加,如果累加的对象大小,大于幸存区的一半,则将当前的对象 age 作为新的阈值,年龄大于此阈值的对象则直接进入老年代。


这里说的一半,是通过 TargetSurvivorRatio 参数进行设置的。

永久代

虽然课程一直在强调,是基于 Java 8+ 版本进行讲解的,但还是有读者提到了永久代。这部分知识容易发生混淆,面试频率也很高,建议集中消化一下。



上面是第 02 课时中的一张图,注意左半部分是 Java 8 版本之前的内存区域,右半部分是 Java 8 的内存区域,主要区别就在 Perm 区和 Metaspace 区。


Perm 区属于堆,独立控制大小,在 Java 8 中被移除了(JEP122),原来的方法区就在这里;Metaspace 是非堆,默认空间无上限,方法区移动到了这里。

常见面试题

JVM 有哪些内存区域?(JVM 的内存布局是什么?)

JVM 包含堆、元空间、Java 虚拟机栈、本地方法栈、程序计数器等内存区域,其中,堆是占用内存最大的一块,如下图所示。


Java 的内存模型是什么?(JMM 是什么?)

JVM 试图定义一种统一的内存模型,能将各种底层硬件以及操作系统的内存访问差异进行封装,使 Java 程序在不同硬件以及操作系统上都能达到相同的并发效果。它分为工作内存和主内存,线程无法对主存储器直接进行操作,如果一个线程要和另外一个线程通信,那么只能通过主存进行交换,如下图所示。


JVM 垃圾回收时如何确定垃圾?什么是 GC Roots?

JVM 采用的是可达性分析算法。JVM 是通过 GC Roots 来判定对象存活的,从 GC Roots 向下追溯、搜索,会产生一个叫做 Reference Chain 的链条。当一个对象不能和任何一个 GC Root 产生关系时,就判定为垃圾,如下图所示。



GC Roots 大体包括:

  • 活动线程相关的各种引用,比如虚拟机栈中 栈帧里的引用;

  • 类的静态变量引用;

  • JNI 引用等。


注意:要想回答的更详细一些,请参照第 05 课时中的内容。

能够找到 Reference Chain 的对象,就一定会存活么?

不一定,还要看 Reference 类型,弱引用在 GC 时会被回收,软引用在内存不足的时候会被回收,但如果没有 Reference Chain 对象时,就一定会被回收。

强引用、软引用、弱引用、虚引用是什么?

普通的对象引用关系就是强引用。


软引用用于维护一些可有可无的对象。只有在内存不足时,系统则会回收软引用对象,如果回收了软引用对象之后仍然没有足够的内存,才会抛出内存溢出异常。


弱引用对象相比软引用来说,要更加无用一些,它拥有更短的生命周期,当 JVM 进行垃圾回收时,无论内存是否充足,都会回收被弱引用关联的对象。


虚引用是一种形同虚设的引用,在现实场景中用的不是很多,它主要用来跟踪对象被垃圾回收的活动。

你说你做过 JVM 参数调优和参数配置,请问如何查看 JVM 系统默认值

使用 -XX:+PrintFlagsFinal 参数可以看到参数的默认值,这个默认值还和垃圾回收器有关,比如 UseAdaptiveSizePolicy。

你平时工作中用过的 JVM 常用基本配置参数有哪些?

主要有 Xmx、Xms、Xmn、MetaspaceSize 等。


更加详细的可参照第 23 课时的参数总结,你只需要记忆 10 个左右即可,建议记忆 G1 相关的参数。面试时间有限,不会在这上面纠结,除非你表现的太嚣张了。

请你谈谈对 OOM 的认识

OOM 是非常严重的问题,除了程序计数器,其他内存区域都有溢出的风险。和我们平常工作最密切的,就是堆溢出,另外,元空间在加载的类非常多的情况下也会溢出,还有就是栈溢出,这个通常影响比较小。堆外也有溢出的可能,这个就比较难排查了。

你都有哪些手段用来排查内存溢出?

这个话题很大,可以从实践环节中随便摘一个进行总结,下面举一个最普通的例子。


内存溢出包含很多种情况,我在平常工作中遇到最多的就是堆溢出。有一次线上遇到故障,重新启动后,使用 jstat 命令,发现 Old 区一直在增长。我使用 jmap 命令,导出了一份线上堆栈,然后使用 MAT 进行分析,通过对 GC Roots 的分析,发现了一个非常大的 HashMap 对象,这个原本是其他同事做缓存用的,但是一个无界缓存,造成了堆内存占用一直上升,后来,将这个缓存改成 guava 的 Cache,并设置了弱引用,故障就消失了。

GC 垃圾回收算法与垃圾收集器的关系?

常用的垃圾回收算法有标记清除、标记整理、复制算法等,引用计数器也算是一种,但垃圾回收器不使用这种算法,因为有循环依赖的问题。



很多垃圾回收器都是分代回收的:

  • 对于年轻代,主要有 Serial、ParNew 等垃圾回收器,回收过程主要使用复制算法;

  • 老年代的回收算法有 Serial、CMS 等,主要使用标记清除、标记整理算法等。


我们线上使用较多的是 G1,也有年轻代和老年代的概念,不过它是一个整堆回收器,它的回收对象是小堆区 。

生产上如何配置垃圾收集器?


首先是内存大小问题,基本上每一个内存区域我都会设置一个上限,来避免溢出问题,比如元空间。通常,堆空间我会设置成操作系统的 2/3,超过 8GB 的堆,优先选用 G1。


然后我会对 JVM 进行初步优化,比如根据老年代的对象提升速度,来调整年轻代和老年代之间的比例。


接下来是专项优化,判断的主要依据是系统容量、访问延迟、吞吐量等,我们的服务是高并发的,所以对 STW 的时间非常敏感。


我会通过记录详细的 GC 日志,来找到这个瓶颈点,借用 GCeasy 这样的日志分析工具,很容易定位到问题。

怎么查看服务器默认的垃圾回收器是哪一个?

这通常会使用另外一个参数,即 -XX:+PrintCommandLineFlags,来打印所有的参数,包括使用的垃圾回收器。

假如生产环境 CPU 占用过高,请谈谈你的分析思路和定位。


首先,使用 top -H 命令获取占用 CPU 最高的线程,并将它转化为十六进制。


然后,使用 jstack 命令获取应用的栈信息,搜索这个十六进制,这样就能够方便地找到引起 CPU 占用过高的具体原因。

对于 JDK 自带的监控和性能分析工具用过哪些?

  • jps:用来显示 Java 进程;

  • jstat:用来查看 GC;

  • jmap:用来 dump 堆;

  • jstack:用来 dump 栈;

  • jhsdb:用来查看执行中的内存信息。

栈帧都有哪些数据?

栈帧包含:局部变量表、操作数栈、动态连接、返回地址等。

JIT 是什么?

为了提高热点代码的执行效率,在运行时,虚拟机将会把这些代码编译成与本地平台相关的机器码,并进行各种层次的优化,完成这个任务的编译器,就称为即时编译器(Just In Time Compiler),简称 JIT 编译器。

Java 的双亲委托机制是什么?

双亲委托的意思是,除了顶层的启动类加载器以外,其余的类加载器,在加载之前,都会委派给它的父加载器进行加载,这样一层层向上传递,直到祖先们都无法胜任,它才会真正的加载,Java 默认是这种行为。


有哪些打破了双亲委托机制的案例?

  • Tomcat 可以加载自己目录下的 class 文件,并不会传递给父类的加载器;

  • Java 的 SPI,发起者是 BootstrapClassLoader,BootstrapClassLoader 已经是最上层了,它直接获取了 AppClassLoader 进行驱动加载,和双亲委派是相反的。

简单描述一下(分代)垃圾回收的过程


分代回收器有两个分区:老生代和新生代,新生代默认的空间占总空间的 1/3,老生代的默认占比是 2/3。


新生代使用的是复制算法,新生代里有 3 个分区:Eden、To Survivor、From Survivor,它们的默认占比是 8:1:1。


当年轻代中的 Eden 区分配满的时候,就会触发年轻代的 GC(Minor GC),具体过程如下:

  • 在 Eden 区执行了第一次 GC 之后,存活的对象会被移动到其中一个 Survivor 分区(以下简称 from);

  • Eden 区再次 GC,这时会采用复制算法,将 Eden 和 from 区一起清理,存活的对象会被复制到 to 区,接下来,只要清空 from 区就可以了。

CMS 分为哪几个阶段?

  • 初始标记

  • 并发标记

  • 并发预清理

  • 并发可取消的预清理

  • 重新标记

  • 并发清理


由于《深入理解 Java 虚拟机》一书的流行,面试时省略并发清理并发可取消的预清理 这两个阶段**,**一般也是没问题的。

CMS 都有哪些问题?

  • 内存碎片问题,Full GC 的整理阶段,会造成较长时间的停顿;

  • 需要预留空间,用来分配收集阶段产生的"浮动垃圾";

  • 使用更多的 CPU 资源,在应用运行的同时进行堆扫描;

  • 停顿时间是不可预期的。

你使用过 G1 垃圾回收器的哪几个重要参数?


最重要的是 MaxGCPauseMillis,可以通过它设定 G1 的目标停顿时间,它会尽量去达成这个目标。G1HeapRegionSize 可以设置小堆区的大小,一般是 2 的次幂。InitiatingHeapOccupancyPercent 启动并发 GC 时的堆内存占用百分比,G1 用它来触发并发 GC 周期,基于整个堆的使用率,而不只是某一代内存的使用比例,默认是 45%。

GC 日志的 real、user、sys 是什么意思?

  • real 指的是从开始到结束所花费的时间,比如进程在等待 I/O 完成,这个阻塞时间也会被计算在内。

  • user 指的是进程在用户态(User Mode)所花费的时间,只统计本进程所使用的时间,是指多核。

  • sys 指的是进程在核心态(Kernel Mode)所花费的 CPU 时间量,即内核中的系统调用所花费的时间,只统计本进程所使用的时间。

什么情况会造成元空间溢出?

元空间默认是没有上限的,不加限制比较危险。当应用中的 Java 类过多时,比如 Spring 等一些使用动态代理的框架生成了很多类,如果占用空间超出了我们的设定值,就会发生元空间溢出。

什么时候会造成堆外内存溢出?

使用了 Unsafe 类申请内存,或者使用了 JNI 对内存进行操作,这部分内存是不受 JVM 控制的,不加限制使用的话,会很容易发生内存溢出。

SWAP 会影响性能么?

当操作系统内存不足时,会将部分数据写入到 SWAP ,但是 SWAP 的性能是比较低的。如果应用的访问量较大,需要频繁申请和销毁内存,那么很容易发生卡顿。一般在高并发场景下,会禁用 SWAP。

有什么堆外内存的排查思路?

进程占用的内存,可以使用 top 命令,看 RES 段占用的值,如果这个值大大超出我们设定的最大堆内存,则证明堆外内存占用了很大的区域。

使用 gdb 命令可以将物理内存 dump 下来,通常能看到里面的内容。更加复杂的分析可以使用 Perf 工具,或者谷歌开源的 GPerftools。那些申请内存最多的 native 函数,就很容易找到。

HashMap 中的 key,可以是普通对象么?有什么需要注意的地方?

Map 的 key 和 value 可以是任何类型,但要注意的是,一定要重写它的 equals 和 hashCode 方法,否则容易发生内存泄漏。

怎么看死锁的线程?

通过 jstack 命令,可以获得线程的栈信息,死锁信息会在非常明显的位置(一般是最后)进行提示。

如何写一段简单的死锁代码?

详情请见第 15 课时的 DeadLockDemo,笔试的话频率也很高。

invokedynamic 指令是干什么的?

invokedynamic 是 Java 7 版本之后新加入的字节码指令,使用它可以实现一些动态类型语言的功能。我们使用的 Lambda 表达式,在字节码上就是 invokedynamic 指令实现的,它的功能有点类似反射,但它是使用方法句柄实现的,执行效率更高。

volatile 关键字的原理是什么?有什么作用?

使用了 volatile 关键字的变量,每当变量的值有变动的时候,都会将更改立即同步到主内存中;而如果某个线程想要使用这个变量,就先要从主存中刷新到工作内存,这样就确保了变量的可见性。


一般使用一个 volatile 修饰的 bool 变量,来控制线程的运行状态。


volatile boolean stop = false;
	
	void stop(){
		this.stop = true;
	}
	void start(){
		new Thread(()->{
			while (!stop){
				//sth
			}
		}).start();
	}

什么是方法内联?

为了减少方法调用的开销,可以把一些短小的方法,比如 getter/setter,纳入到目标方法的调用范围之内,这样就少了一次方法调用,速度就能得到提升,这就是方法内联的概念。

对象是怎么从年轻代进入老年代的?

在下面 4 种情况下,对象会从年轻代进入到老年代。


  • 如果对象够老,则会通过提升(Promotion)的方式进入老年代,一般根据对象的年龄进行判断。

  • 动态对象年龄判定,有的垃圾回收算法,比如 G1,并不要求 age 必须达到 15 才能晋升到老年代,它会使用一些动态的计算方法。

  • 分配担保,当 Survivor 空间不够的时候,则需要依赖其他内存(指老年代)进行分配担保,这个时候,对象也会直接在老年代上分配。

  • 超出某个大小的对象将直接在老年代上分配,不过这个值默认为 0,意思是全部首选 Eden 区进行分配。


safepoint 是什么?

当发生 GC 时,用户线程必须全部停下来,才可以进行垃圾回收,这个状态我们可以认为 JVM 是安全的(safe),整个堆的状态是稳定的。



如果在 GC 前,有线程迟迟进入不了 safepoint,那么整个 JVM 都在等待这个阻塞的线程,造成了整体 GC 的时间变长。

MinorGC、MajorGC、FullGC 都什么时候发生?

MinorGC 在年轻代空间不足的时候发生,MajorGC 指的是老年代的 GC,出现 MajorGC 一般经常伴有 MinorGC。


FullGC 有三种情况:第一,当老年代无法再分配内存的时候;第二,元空间不足的时候;第三,显示调用 System.gc 的时候。另外,像 CMS 一类的垃圾回收器,在 MinorGC 出现 promotion failure 的时候也会发生 FullGC。

类加载有几个过程?

加载、验证、准备、解析、初始化。


什么情况下会发生栈溢出?

栈的大小可以通过 -Xss 参数进行设置,当递归层次太深的时候,则会发生栈溢出。

生产环境服务器变慢,请谈谈诊断思路和性能评估?

希望第 11 课时和第 16 课时中的一些思路,能够祝你一臂之力。下图是第 11 课时的一张影响因素的全景图。



从各个层次分析代码优化的手段,如下图所示:



如果你应聘的是比较高级的职位,那么可以说一下第 23 课时中的最后总结部分。

小结

本课时我们首先修正了一些表述错误的知识点;然后分析了一些常见的面试题,这些面试题的覆盖率是非常有限的,因为很多细节都没有触及到,更多的面试题还需要你自行提取、整理,由于篇幅有限,这里不再重复。


到现在为止,我们的课程内容就结束了。本课程的特色主要体现在实践方面,全部都是工作中的总结和思考;辅之以理论,给你一个在工作中,JVM 相关知识点的全貌。当然,有些课时的难度是比较高的,需要你真正的实际操作一下。


写作的过程中难免会有遗漏的知识点,可通过拉勾客服人员加入本课程的读者群一起讨论;如果你觉得课程不错,从中有所收获的话,不要忘了推荐给身边的朋友哦。前路漫漫,一起加油。