Skip to content

第60讲:主内存和工作内存的关系?

本课时我们主要讲解主内存和工作内存的关系。

CPU 有多级缓存,导致读的数据过期

由于 CPU 的处理速度很快,相比之下,内存的速度就显得很慢,所以为了提高 CPU 的整体运行效率,减少空闲时间,在 CPU 和内存之间会有 cache 层,也就是缓存层的存在。虽然缓存的容量比内存小,但是缓存的速度却比内存的速度要快得多,其中 L1 缓存的速度仅次于寄存器的速度。结构示意图如下所示:

在图中,从下往上分别是内存,L3 缓存、L2 缓存、L1 缓存,寄存器,然后最上层是 CPU 的 4个核心。从内存,到 L3 缓存,再到 L2 和 L1 缓存,它们距离 CPU 的核心越来越近了,越靠近核心,其容量就越小,但是速度也越快。正是由于缓存层的存在,才让我们的 CPU 能发挥出更好的性能。

其实,线程间对于共享变量的可见性问题,并不是直接由多核引起的,而是由我们刚才讲到的这些 L3 缓存、L2 缓存、L1 缓存,也就是多级缓存引起的:每个核心在获取数据时,都会将数据从内存一层层往上读取,同样,后续对于数据的修改也是先写入到自己的 L1 缓存中,然后等待时机再逐层往下同步,直到最终刷回内存。

假设 core 1 修改了变量 a 的值,并写入到了 core 1 的 L1 缓存里,但是还没来得及继续往下同步,由于 core 1 有它自己的的 L1 缓存,core 4 是无法直接读取 core 1 的 L1 缓存的值的,那么此时对于 core 4 而言,变量 a 的值就不是 core 1 修改后的最新的值,core 4 读取到的值可能是一个过期的值,从而引起多线程时可见性问题的发生。

JMM的抽象:主内存和工作内存

什么是主内存和工作内存

Java 作为高级语言,屏蔽了 L1 缓存、L2 缓存、L3 缓存,也就是多层缓存的这些底层细节,用 JMM 定义了一套读写数据的规范。我们不再需要关心 L1 缓存、L2 缓存、L3 缓存等多层缓存的问题,我们只需要关心 JMM 抽象出来的主内存和工作内存的概念。为了更方便你去理解,可参考下图(来自程晓明《深入理解 Java 内存模型》https://www.infoq.cn/article/java-memory-model-1/):

每个线程只能够直接接触到工作内存,无法直接操作主内存,而工作内存中所保存的正是主内存的共享变量的副本,主内存和工作内存之间的通信是由 JMM 控制的。

主内存和工作内存的关系

JMM 有以下规定:

(1)所有的变量都存储在主内存中,同时每个线程拥有自己独立的工作内存,而工作内存中的变量的内容是主内存中该变量的拷贝;

(2)线程不能直接读 / 写主内存中的变量,但可以操作自己工作内存中的变量,然后再同步到主内存中,这样,其他线程就可以看到本次修改;

(3) 主内存是由多个线程所共享的,但线程间不共享各自的工作内存,如果线程间需要通信,则必须借助主内存中转来完成。

听到这里,你对上图的理解可能会更深刻一些,从图中可以看出,每个工作内存中的变量都是对主内存变量的一个拷贝,相当于是一个副本。而且图中没有一条线是可以直接连接各个工作内存的,因为工作内存之间的通信,都需要通过主内存来中转。

正是由于所有的共享变量都存在于主内存中,每个线程有自己的工作内存,其中存储的是变量的副本,所以这个副本就有可能是过期的,我们来举个例子:如果一个变量 x 被线程 A 修改了,只要还没同步到主内存中,线程 B 就看不到,所以此时线程 B 读取到的 x 值就是一个过期的值,这就导致了可见性问题。

以上就是本课时的内容了,本课时主要介绍了 CPU 的多层缓存结构,以及由此抽象出来的 JMM 主内存和工作内存的结构图,并且还介绍了主内存和工作内存之间的关系。听完本课时,你会更加深刻的理解为什么会发生可见性问题。